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Normalized Transverse Current Distributions
of Microstrip Lines on Anisotropic
Substrates

MASANORI KOBAYASHI, MEMBER, 1EEE, AND HIDETOSHI MOMOI

Abstract —The normalized transverse current distributions are obtained
for microstrip lines on anisotropic substrates and their dependence on ¢,
w/h, and the anisotropy ratio AR is explained. These distributions are
classified into five cases. There are the cases in which the normalized
transverse current distribution can be approximated by that obtained
already for the cases of isotropic substrate.

I. INTRODUCTION

IELECTRIC anisotropy is present in many substrate

materials used for microwave integrated circnits. This
anisotropy occurs either naturally in a material or is intro-
duced during a manufacturing process. Alexopoulos [1]
summarized the problem of anisotropy using about 100
references and also gave new results.

It seems that the quasi-TEM analysis of microstrip lines
on anisotropic substrates has been thoroughly investigated
by many researchers both theoretically and experimentally
[2]-{14].

Microstrip CAD requires accurate and reliable informa-
tion on the dispersion behavior. This dispersion analysis
has been studied by many researchers (see [1], [15]-[28],
and references therein). However, there were significant
discrepancies between many computed results even for the
cases of isotropic substrates [18], [28]. Recently, Kretch
and Collin [25] pointed out that there are also discrepan-
cies between several computed results for the case of
anisotropic substrates. To calculate accurately the disper-
sion characteristics requires expressing the current distri-
butions on the strip accurately with a minimum number of
basis functions [16], {271, [28].

The normalized longitudinal and transverse current dis-
tributions have already been obtained for the single micro-
strip lines of isotropic substrates and have been expressed
in closed form [27). Using these expressions and the spec-
tral-domain analysis [16], the previous paper calculated the
effective relative permittivities with a high degree of accu-
racy and tabulated those [28]. Recently, the present authors
showed the normalized longitudinal and transverse current
distributions on the coupled microstrip lines of isotropic
substrates [30].
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An attempt will be made to tabulate the results with a
high degree of accuracy for use as a numerical “standard”
in the cases of anisotropic substrates. In the spectral-
domain analysis used in calculating those, the choice of the
basis functions for the current distributions is important
for numerical efficiency. If the first few basis functions
approximate the actual unknown current distributions rea-
sonably well, the necessary size of the matrix can be held
small for a given accuracy of the solution, so that CPU
time can be saved. However, the literature determining
current distributions is sparse, even for the microstrip line
on isotropic substrate, as indicated in [27]. Recently, Shih
et al. [29] proposed a full-wave analysis based on con-
formal mapping and variational reaction theory. The
frequency dependences of current distributions were re-
vealed for the cases of isotropic substrates. It is the first
time that those characteristics were reasonably obtained
for wide ranges of frequency. At lower frequency, the
results were in good agreement with those [27] obtained
using the same method as in present paper. The results of
effective relative permittivities [29] were in good agreement
with those tabulated in [28)]. For an example of the current
distribution for the cases of anisotropic substrate we may
cite the paper by Sherrill and Alexopoulos [24] although it
deals with the finline/strip configuration.

The present article shows the normalized transverse cur-
rent distributions obtained using the method derived by
Denlinger [15] and a Green’s function technique [7], (9],
[11] with concern for efficiency in obtaining dispersion
characteristics for the cases of anisotropic substrates. The
normalized longitudinal current distributions for the case
of anisotropic substrates are not shown here because they
can be approximated by the results for the cases of iso-
tropic substrates [27].

II. CALCULATING PROCEDURE

Fig. 1 shows the open microstrip line structure, assumed
to be uniform and infinite in both the x and z directions.
The infinitesimally thin strip and the ground plane are
taken as perfect conductors. The structure is divided into
two regions, corresponding to the air and the dielectric
structure. It is also assumed that the substrate material is
lossless and that its permittivity tensor and permeability
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Fig. 1. Configuration of a microstrip line on anisotropic substrate.
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Fig. 2. Normalized transverse current distributions on the strip for the
cases of w/h=1,¢¥=2 AR=05and 1.
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and p., respectively. Here €¥, €, and €} (=€) denote
the relative permittivities in the directions of the principal
dielectric axes of the substrate material, respectively.

Let the total longitudinal current be denoted by
Iexp(— jB(f)z), with the quantity I/v(f) denoted by Q.
Here B(f) is the phase constant ( =w/v(f), @ =27f),
o(f) (=c/\ex:(f)) is the phase velocity, eX(f) the
effective relative permittivity at the frequency £, and ¢ the
velocity of light in free space. We can use the following
approximate expression [15] for obtaining the transverse

current distribution on the strip:
i(x)=- jo(sgnx)
'j(; {o(x)—€eX(0)ap(x)} dxe Bz (2)

-where

snx={~1’ x<0
& +1, x> 0.
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Fig. 3. Normalized transverse current distributions on the strip for the
case of w/h=1, ¢ =2, AR=5. ——, Present method. ————— R

Approximate formula for the case of isotropic substrate for w/h=1
[27] (with a negative sign).
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Fig. 4. Normalized transverse current distributions on the strip for the
cases of AR =1.297,1.298,1.299 when w/h =1 and c;‘,‘ =2

Here o(x) denotes the charge distribution on the strip for

,a given total charge per unit length Q and o,(x) denotes

the charge distribution on the strip of the microstrip line
without substrate for a given total charge per unit length
Q/€¢*:(0). In the present article, o(x), 05(x), and €% (0)
were calculated with a high degree of accuracy by using
the Green’s function technique [7], [9], [11} for vatious
w/h, €*, and anisotropy ratio AR (=e€J/€}).

111.

Fig. 2 shows the transverse current distributions
i (x)/]i(x,,)| on the strip normalized to |i,(x,,)| at the
extremum point x = x, for the cases of anisotropy ratio
AR=05 and 1 when w/h=1 and €} =2. Good agree-
ment is seen between the two curves. Next, we calculated

REsSULTS
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microstrip lines on anisotropic substrates.

i(x)/)i,(x,)| for the case of AR=15 and obtained an
interesting result. This result is shown in Fig. 3 and has a

negative value. This negative value was never obtained in

the case of isotropic substrates [27]. Comparing Figs. 2 and
3, the curves are almost symmetrical with respect to the
abscissa.

We calculated the current distributions for the cases of
0.5 < AR <5. Fig. 4 shows the typical results with both
positive and negative extrema. Fig. 4 suggests that there is
a transition region in the process changing from the curve
only with positive extremum to the curve only with nega-
tive extremum when increasing the value of the anisotropy
ratio AR.

Therefore, the normalized transverse current distribu-
tions were calculated for several cases with various w/h,
¢k, and AR. It was found that the current distributions
can be classified into five cases, as shown in Fig. 5. Fig. 6
shows the region for each case when ¢} = 2. The figures
written in Fig. 6 denote the values of the anisotropy ratio
AR at the boundary between two distribution forms. We
obtained the distribution form of case (3) for 1.2955 < AR
<1.3 when w/h =1 although it is not shown in Fig. 6.
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Fig. 6. Relations of anisotropy ratio AR and shape ratio w/4 at the
boundary between the five cases shown in Fig, 5 (¢} =2).
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Fig. 7. Transition process in which the distribution form changes from
case (D to case (2) when increasing AR (w/h=25and ¢f =2).
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Fig. 8. Positions of the positive and negative extrema for the cases of
w/h=1, 2.5, 5, 10 when ¢} = 2. (+): positive extrema. (—): negative
extrema. ’

Fig. 7 shows the curves of the normalized transverse
current distributions for the cases of various AR when
w/h=25 and €}=2. From Fig. 7, we can know the
transition process in which the distribution form changes
from case (1) to case (2) when increasing the value of AR.

Fig. 8 shows the positions of the positive and negative
extrema for the various cases when €} = 2.

Fig. 9 shows the region for distribution forms when
¢¥ =38. It is seen that the transition region shifts upward
by about 0.36 in the value of AR from that for ¢} = 2.

Fig. 10 compares the positions of the positive and nega-
tive extrema for the cases of ¢ =2 and 8 when w/h=2.
Excluding the transition regions, good agreement is seen
between the two cases. This property holds for the cases of
different e} when the same w/h is used, although not
shown here. It is meaningful to say that the curves of
normalized transverse current distributions are almost in-
distinguishable, as shown in Fig. 2, for the cases of differ-
ent € and AR, when w/h has the same value, as that at
which the values of 2x,, /w exist on the flat part in the
curves of 2x,,/w versus AR. For example, these cases
correspond to the flat part in Figs. 8 and 10.

This teaches us that the closed-form expression for
i,(x)/li(x,)| for these cases can be approximated by that
for the case of isotropic substrate with w/h = same value.
The dotted line shown in Fig. 3 denotes the result obtained
using the closed-form expression of i (x)/i,(x,,)| derived
in the previous paper [27]. Good agreement is seen be-
tween the theoretical and approximate curves.

IV. CONCLUSION

The normalized transverse current distributions have
been derived for open microstrip lines on anisotropic sub-
strates, and their dependence on ¢}, w/h, and AR has
been explained. It has been shown that these distributions
can be classified into five cases. It has been found that the
curves of normalized transverse current distributions are
almost indistinguishable for the cases of different € and
AR when w/h has the same value as that at which the
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Fig. 9. Relations of anisotropy ratio AR and shape ratio w/H at the

boundary between the five cases shown in Fig. 5 (¢ = 8).
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Fig. 10. Comparison of the positions of the positive and negative ex-
trema for the cases of €f =2 and & when w/h=2. (+): positive
extrema. (—): negative extrema

values of 2x,,/w exist on the flat part in the curves of
2x,, /w versus AR. In these cases, we can approximate the
normalized transverse current distribution by the closed-
form expression for the case of isotropic substrate with
w/h = same value. Good agreement has been seen between
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the theoretical and approximate curves. Using these
current distributions, the dispersion characteristics of mi-
crostrip lines on anisotropic substrates are being per-
formed using spectral-domain analysis.

The current distributions depend on a frequency, as
revealed in [29]. Therefore, the current distributions shown
in the present paper are valid at lower frequencies. The
frequency dependence of current distributions will be in-
vestigated in the near future using spectral-domain analy-
sis with a large number of basis functions for both single
and coupled microstrip lines on isotropic and anisotropic
substrates. '
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